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Half-period delayed feedback control for dynamical systems with symmetries
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Delayed feedback control~DFC!, proposed by Pyragas@Phys. Lett. A170, 421 ~1992!#, is a simple and
practical method of controlling chaos in continuous dynamical systems. However, it had been proved that the
DFC has a limitation; that is, any hyperbolic unstable periodic orbit~UPO! with an odd number of real
characteristic multipliers greater than unity can never be stabilized by the DFC. In this paper, to overcome this
limitation, we propose a modified DFC, ‘‘half-period delayed feedback,’’ of which the delay time is a half of
the period of the UPO. We apply it to stabilizing self-symmetric directly unstable periodic orbits of the Duffing
equation. This modified DFC can also be generalized to a form stabilizing symmetric periodic orbits in some
systems with symmetries such as the Lorenz equation.@S1063-651X~98!08508-0#

PACS number~s!: 05.45.1b, 02.30.Ks, 02.60.Cb
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I. INTRODUCTION

Delayed feedback control~DFC!, proposed by Pyraga
@1#, is a method of controlling chaos in continuous dynam
cal systems. The DFC is based on the feedback of the di
ence between the current state of a system and a stat
layed by the period of a desired unstable periodic o
~UPO!. This is a convenient method that does not requir
preliminary calculation of the UPO. Because of this conv
nience, the DFC method has been applied to control
chaos in some real systems such as a laser system@2#, elec-
tronic systems@3,4#, and a magnetoelastic system@5#.

However, the stability analysis required for determini
the feedback gain is very difficult, because the control
system is described by a delay-differential equation, the s
space of which is infinite dimensional. Moreover, it has be
proved that the DFC has a limitation, that is, any hyperbo
UPOs with an odd number of real characteristic multiplie
greater than unity can never be stabilized by the DFC.

This limitation of the DFC was first proved by Ushio@6#
for discrete time systems; then it was proved that the D
for continuous time systems also has the same limitation@7#.
Justet al. @8# discussed basically the same result. Pyragas@9#
showed the same limitation for stabilizing equilibrium poin
in two-dimensional continuous systems, and Konishi a
Kokame@10# proved this limitation for two-dimensional dis
crete systems. It was also proved that every control met
in which the feedback term vanishes when an orbit of
same period as the delay time is stabilized has the s
limitation @11#. Hence it seems hard to overcome this lim
tation by any modifications of the DFC proposed so f
including the extended time delay autosynchronizat
~ETDAS! @9,12,13#.

In order to overcome this limitation, we propose a mo
fication of the DFC, ‘‘half-period delayed feedback control
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for stabilizing self-symmetric directly unstable periodic o
bits of the Duffing equation. We also show that a symme
periodic orbit of the Lorenz equation can be stabilized b
more generalized form of this modified DFC.

The Duffing equation is a two-dimensional nonauton
mous differential equation with periodic forcing@14#. Since
the stroboscopic map of this equation is area contractin
UPO of it is either directly unstable or inversely unstable.
directly unstable orbit has one characteristic multipl
greater than unity. Thus directly unstable orbits can neve
stabilized by the DFC due to the above limitation. Our pu
pose is to propose a method for stabilizing UPOs of t
type.

On the other hand, the Duffing equation has a symme
if x(t) is a solution of the equation, then2x(t2T/2) is also
a solution of it. HereT(52p) is the period of the externa
forcing. This is due to the fact that the equation is compo
of a polynomial including only odd-order terms, and the e
ternal forcing is B cost, which has a symmetryB cost
52B cos(t1T/2). In particular, we call a solution satisfyin
x(t)52x(t2T/2) a self-symmetric solution. It is easy to se
that a self-symmetric solution isT periodic.

The most important property of the Duffing equation w
utilize in this study is that a directly unstable orbit is al
self-symmetric in many cases. On the basis of this prope
we propose a modification of the DFC for stabilizing se
symmetric directly unstable orbits in the Duffing equatio
and confirm its feasibility by numerical experiments. W
also generalize it to control other systems with similar sy
metries such as the Lorenz equation.

This paper is organized as follows. Section II briefly i
troduces the DFC and explains its limitation. Section III d
scribes some properties, in particular, a symmetry of
UPOs of the Duffing equation. Section IV proposes a ha
period DFC for stabilizing self-symmetric directly unstab
periodic orbits in the Duffing equation, which cannot be s
bilized by the original DFC. Section V generalizes this mo
fied DFC to a form controlling chaos in more general equ
tions with symmetry, in particular the Lorenz equatio
:
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Section VI shows some numerical experiments on the st
lization of UPOs in the Duffing equation and the Lore
equation using the half-period DFC. Section VII presents
conclusion.

II. DFC AND ITS LIMITATION

Let us consider the stabilization of a UPO contained i
chaotic attractor of ann-dimensional ordinary differentia
equation

ẋ~ t !5 f „x~ t !,t… ~xPRn!, ~1!

by the DFC@1#,

ẋ~ t !5 f „x~ t !,t…1K„x~ t2T!2x~ t !…. ~2!

HereK is ann3n feedback gain matrix, andT(.0) is the
period of the target UPO. When a solution of Eq.~2! con-
verges to aT-periodic orbit, the feedback termK„x(t2T)
2x(t)… vanishes, so this is guaranteed to be a solution of
uncontrolled system~1!, that is, the target UPO is stabilized

The DFC is a simple and convenient method which d
not need preliminary calculation of the UPO, and so it
applicable to controlling unknown systems. However, sin
the controlled system~2! is described by a differential
difference equation with the delay timeT, the determination
of the feedback gainK is very difficult even if the function of
the system,f, is known. In addition to the above difficulty o
the stability analysis, recently it has been shown that
DFC has a limitation expressed by the following theorem

Theorem.Suppose that Eq.~1! is a nonautonomous sys
tem that isT periodic with respect to timet. If the number of
real characteristic multipliers of a hyperbolic UPO grea
than unity is odd, then the UPO cannot be stabilized by
DFC.

This theorem was first proved by Ushio about the DFC
controlling discrete time systems@6#, and then extended to
the case of continuous systems@7#. This limitation holds for
every control method with which the feedback term vanis
when a periodic orbit of a certain period is stabilized. The
fore some extended DFCs such as the ETDAS@9,12,13#, or
their application to controlling autonomous systems, a
have this limitation@11#.

III. UPOS OF THE DUFFING EQUATION
AND THEIR SYMMETRY

The Duffing equation is a two-dimensional nonauton
mous differential equation@14#,

ẋ5y, ẏ52dy2ax2x31B cos t. ~3!

This is an oscillatory system with a sinusoidal periodic fo
ing of the periodT52p. So the period of every periodi
solution is an integer times of 2p. In what follows, we deal
with 2p-periodic solutions.

Since the damping coefficientd is positive in general, the
stroboscopic map, which is defined by a 2p-periodic plotting
of the trajectory of solutions, is area contracting on the (x,y)
plane. Therefore, a completely unstable periodic orbit, b
of whose characteristic multipliers are greater than unity
their magnitudes, does not exist. On the other hand, the p
i-
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uct of the characteristic multipliers of any orbit is positiv
because the stroboscopic map is orientation preserv
Therefore, characteristic multipliers, denoted byl1 andl2 ,
of any UPO of the Duffing equation~3! satisfy 0,l2,1
,l1 or l2,21,l1,0. A UPO satisfying the former is
called a directly unstable orbit, and one satisfying the latte
called an inversely unstable orbit. Directly unstable perio
orbits cannot be stabilized by the DFC due to the abo
mentioned limitation.

On the other hand, the Duffing equation~3! has a kind of
symmetry; that is, when„x(t),y(t)… is a solution of it,
„2x(t2p),2y(t2p)… is also a solution. We can easil
prove this fact by noticing that the right hand side of Eq.~3!
contains only terms of odd number order with respect tx
andy, and that the external forcing has a symmetryB cost
52B cos(t1p). ~When the external forcing contains a co
stant term, such asB cost1B0, however, this symmetry
does not exist.!

We call a solution satisfying„x(t),y(t)…5„2x(t2p),
2y(t2p)… at every timet a ‘‘self-symmetric solution.’’ A
self-symmetric solution is 2p periodic. This is easily shown
as follows: If „x(t),y(t)… is self-symmetric, then

„x~ t22p!,y~ t22p!…

5„x~ t2p2p!,y~ t2p2p!…

5~2x~ t2p!,2y~ t2p!!5„x~ t !,y~ t !….

The most important property of the Duffing equation we u
lize in this study is that a directly unstable solution is al
self-symmetric in many cases. This does not always ho
however, its converse, ‘‘a self-symmetric unstable solution
directly unstable,’’ is true, as shown in the Appendix.

Using the symmetry that many directly unstable orb
possess, in Sec. IV we will propose a modification of t
DFC to stabilizing self-symmetric directly unstable period
orbits of the Duffing equation.

IV. HALF-PERIOD DELAYED FEEDBACK

To stabilize self-symmetric directly unstable periodic o
bits, we propose a modified delayed feedback control,

ẋ~ t !5 f „x~ t !,t…2K„x~ t2T/2!1x~ t !…. ~4!

Herex5(x,y). The functionf denotes the right hand side o
the Duffing equation~3!, andK is a 232 gain matrix. The
delay time of the feedback is set toT/25p, a half of the
period of the target directly unstable periodic orbit, inste
of T52p as for the original DFC. Hence the feedback te
does not necessarily vanish when a 2p-periodic UPO is sta-
bilized, but it vanishes only when a self-symmetric orbit
stabilized. Therefore, the control described by Eq.~4! is ex-
pected to stabilize self-symmetric directly unstable orbits
lectively. We will call this control half-period delayed feed
back control.

Determination of the value of the gainK of this feedback
is difficult, as is the case for the original DFC. However, t
limitation that directly unstable orbits cannot be stabilized
expected to be dissolved for the following reason. As sho
in Ref. @7#, since a 2p-periodic orbit is not created, and doe
not vanish nor change its location, when the gainK is varied
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in the original DFC, the pitchfork and transcritical bifurc
tions cannot occur, which is inevitable if a directly unstab
orbit is to be stabilized. For the half-period DFC, howev
the feedback term vanishes only when a self-symmetric o
is stabilized. Thus such a restriction of bifurcations no lon
exists.

However, this only implies such a limitation does not e
plicitly hold for the half-period DFC; thus it is not proved, o
course, that a directly unstable orbit can always be stabiliz
Since the stability analysis for the determination of the g
K is as difficult as for the original DFC, in Sec. VI we wi
discuss the ability of the proposed DFC to stabilize se
symmetric directly unstable orbits by numerical calculatio

V. GENERALIZATION OF THE HALF-PERIOD DFC

The half-period DFC@Eq. ~4!# proposed in Sec. IV is
intended to control the Duffing equation~3!. However, in
general it is applicable to anyn-dimensional system de
scribed by Eq.~1! when the functionf in the right hand side
of Eq. ~1! is expanded with respect to timet as follows:

f „x~ t !,t…5 f 0„x~ t !…1 (
k50

`

gk„x~ t !…cos
2p~2k11!

T
t

1 (
k50

`

hk„x~ t !…sin
2p~2k11!

T
t. ~5!

Here we assume thatf 0„x(t)… is a polynomial of an odd
order with respect to the components ofx, while gk„x(t)…
andhk„x(t)… are polynomials of an even order ofx. It is easy
to see that Eq.~1! with these conditions has the same sy
metry as the Duffing equation~3!, as shown in Sec. III.

The half-period DFC can also be extended to the fo
controlling systems with more general symmetries as follo
@15#: Here we consider nonautonomous systems describe
Eq. ~1!. We assume the functionf in Eq. ~1! is T periodic
with respect tot, and has the symmetry,

f ~Sx,t1T/2!5S f~x,t !, ~6!

S25I n . ~7!

Here S is an n3n matrix, andI n is the n-dimensional unit
matrix. It is easy to see that ifx(t) is a solution of Eq.~1!
then Sx(t2T/2) is also a solution. We call a solution th
satisfiesSx(t2T/2)5x(t) at every timet a self-symmetric
solution. It is also clear that a self-symmetric solution isT
periodic. Therefore, such an orbit is expected to be stabili
by a delayed feedback,

ẋ~ t !5 f „x~ t !,t…1K„Sx~ t2T/2!2x~ t !…. ~8!

This is a natural generalization of the half-period DF
@Eq. ~4!#. The DFC @Eq. ~4!# for the Duffing equation can
be regarded as a special case of Eq.~8! with the dimension
n52 and S52I 2 . System~1!, with a function f defined
by Eq. ~5!, is also a special case with ann3n matrix
S52I n .

In Eq. ~8!, the feedback term is based on the state varia
x itself. However, it can easily be generalized to the fo
,
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using general linear output,Cx, of the sysmem as
K„CSx(t2T/2)2Cx(t)…. HereC is an l 3n output matrix,
andK is ann3 l gain matrix.

Although system~1! considered above is a nonauton
mous system with aT-periodic function, the generalize
half-period DFC can also be applied to controlling auton
mous systems. When Eq.~1! is an autonomous system,f
does not depend on timet explicitly. Hence the symmetry is
expressed byf (Sx)5S f(x), and if x(t) is a solution then
Sx(t) is also a solution. We may call aT-periodic orbit~T is
an arbitrary positive number! that satisfiesSx(t2T/2)
5x(t) self-symmetric. Such a periodic orbit may be sta
lized by feedback@Eq. ~8!#.

As an example of an autonomous system with suc
symmetry, here we deal with the Lorenz equation

ẋ52s~x2y!,

ẏ5rx2y2xz, ~9!

ż5xy2bz.

This three-dimensional equation has a symmetry rep
sented by a matrixS5diag(21,21,1). That is, when
„x(t),y(t),z(t)… is a solution of it,„2x(t),2y(t),z(t)… is
also a solution. Therefore a self-symmetric solution, wh
satisfies x(t)52x(t2T/2), y(t)52y(t2T/2), and z(t)
5z(t2T/2), is a T-periodic solution, and it may be stab
lized by the following delayed feedback:

ẋ~ t !5 f „x~ t !…2KS x~ t2T/2!1x~ t !
y~ t2T/2!1y~ t !
z~ t !2z~ t2T/2!

D . ~10!

Here x5(x,y,z)T, f (x) denotes the right hand side of th
Lorenz equation~9!, andK is a 333 gain matrix. Hence all
the feedback terms vanish when a self-symmetricT-periodic
orbit is a solution; that is, this control is expected to stabil
such a UPO specifically. This is a generalization of the ha
period DFC for autonomous systems, and will be discus
in Sec. VI.

The symmetry described by Eqs.~6! and ~7! can be ex-
tended to more general forms as

f ~Sx,t1T/m!5S f~x,t !, ~11!

Sm5I n , ~12!

wherem is an integer satisfyingm>2. We can easily see tha
if x(t) is a solution, thenSx(t2T/m) is also a solution. We
can consider a delayed feedback control,

ẋ~ t !5 f „x~ t !,t…1K„Sx~ t2T/m!2x~ t !…, ~13!

to stabilize a self-symmetric andT-periodic orbit that satis-
fies Sx(t2T/m)5x(t). This feedback may be called
1/m-period DFC. In particular, we consider that a1

3-period
DFC is very important for controlling chaos in three-pha
circuits in electric power systems@16#.
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VI. NUMERICAL EXPERIMENTS

A. Control of the Duffing system

We made numerical experiments of controlling chaos in
the Duffing equation~3! with the following two parame-
ter settings:~a! d50.25, B50.3, and a521.0; and ~b!
d50.1, B512.0, anda50.0. Chaotic attractors shown in
Figs. 1~a! and 1~b! are observed at the above parameter se
tings ~a! and~b!, respectively~the attractors are expressed as
those for the stroboscopic map! @14,17#. In these attractors,
the 2p-periodic UPOs shown in Figs. 2~a! and 2~b! are con-
tained. The locations and characteristic multipliers of thes
UPOs are shown in Table I. For both parameter settings~a!
and~b!, the UPOs~i! and~ii ! are symmetric with each other
and inversely unstable, while the UPO~iii ! is a self-
symmetric directly unstable periodic orbit. Therefore UPOs
~i! and~ii ! are not limited by the limitation described in Sec.
II. In fact, it has been confirmed that they can be stabilize
by the original DFC@18#. Moreover, the Duffing equation~3!
of setting~a! describes a model of a magnetoelastic oscillato
with a chaotic attractor, whose UPOs~i! and ~ii ! are proved
to be stabilized by the DFC in some experiments@5#.

Here we try to stabilize the directly unstable periodic orbi
~iii !, by the DFC@Eq. ~4!# with a diagonal feedback gain
matrix K5diag(k1,k2). That is, we apply a delayed feedback
as follows:

FIG. 1. Chaotic attractors of the Duffing equation~3!. Strobo-
scopic points att52np. ~a! d50.25, B50.3, anda521.0. ~b!
d50.1, B512.0, anda50.0.

FIG. 2. UPOs in chaotic attractors of the Duffing equation~3!.
~a! d50.25, B50.3, anda521.0. ~b! d50.1, B512.0, anda
50.0.
t-

e

d

r

t

ẋ~ t !5y~ t !2k1„x~ t2p!1x~ t !…,
~14!

ẏ~ t !52dy~ t !2ax~ t !2x~ t !31B cos t

2k2„y~ t2p!1y~ t !….

We survey the gain parametersk1 and k2 with which the
target UPO is stabilized, in the region 0.0<k1<5.0 and 0.0
<k2<1.0 for parameter setting~a!, and in the region 0.0
<k1<5.0 and 0.0<k2<5.0 for setting~b!. The stability re-
gion of UPO~iii ! is denoted by markingL in Figs. 3~a! and
3~b!. The stability is judged from the numerically calculate
maximum characteristic exponent. The result proves that
proposed method is applicable to stabilizing self-symme
directly unstable periodic orbits. Examples of the process
converging the stroboscopic point to the target UPO un
the half-period DFC are displayed in Fig. 4.

The characteristic multipliers shown in Table I imply th
UPO~iii ! has strong instability in both settings~a! and~b!. In
particular, two multipliers have extremely different values
~a!. Hence it should also be remarkable that such orb
which are hard to stabilize intrinsically, could be stabiliz
by this method.

In the parameter region where UPO~iii ! cannot be stabi-
lized, the controlled orbits are chaos or 2p-periodic orbits
different from each of~i!, ~ii !, and~iii !. When a 2p-periodic

FIG. 3. Stability region in thek1-k2 plane for UPO~iii ! of the
Duffing equation~3!. The stability region is denoted byL. ~a! d
50.25,B50.3, anda521.0. ~b! d50.1, B512.0, anda50.0.

TABLE I. UPOs of the Duffing equation~3!. (x,y) is the fixed
point of the stroboscopic map corresponding to each UPO,
(l1 ,l2) denotes characteristic multipliers of the fixed point.~a! d
50.25,B50.3, anda521.0. ~b! d50.1, B512.0, anda50.0.

~a! d50.25,B50.3, anda521.0
x y l1 l2

~i! 0.129 0.194 20.0257 28.076
~ii ! 21.102 0.636 20.0257 28.076
~iii ! 20.149 0.0189 230.49 0.0009

~b! d50.1, B512.0, anda50.0
x y l1 l2

~i! 3.288 20.853 20.144 23.709
~ii ! 3.797 21.535 20.144 23.709
~iii ! 3.548 0.726 15.326 0.0348
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orbit is stabilized, the feedback term does not vanish. He
it is not a solution of the uncontrolled Duffing equation~3!.

Figure 5 is a bifurcation diagram of the stabilization pr
cess of UPO~iii ! by the half-period DFC@Eq. ~14!# with

FIG. 4. Examples of the stabilization of UPOs of the Duffin
equation~3! by the half-period DFC.~a-i! stroboscopic points and
~a-ii! the feedback termx(t2p)1x(t) for d50.25, B50.3, a
521.0, k155.0 andk250.0. ~b-i! stroboscopic points and~b-ii!
the feedback termx(t2p)1x(t) for d50.1, B512.0,a50.0, k1

50.0, andk251.0.

FIG. 5. Bifurcation diagram of attractors for the Duffing equ
tion ~3! under the half-period DFC. The parameters settings ard
50.1, B512.0,a50.0, andk250.0.
e

parameterk1 varied from 0.0 to 1.0, andk2 fixed to 0.0. In
this diagram, two bifurcation processes from different init
values are superimposed. So the bifurcation at the stabi
tion point is not period doubling, as it seems, but pitchfo
That is, branches of two stable 2p-periodic orbits and UPO
~iii ! coalesce into a stable orbit neark150.45. Such a bifur-
cation with a coalescence of 2p-periodic orbits can neve
occur when the original DFC is applied because of the lim
tation explained in Sec. II@7#. However, for the half-period
DFC, the feedback term vanishes only when a se
symmetric orbit is a solution. Thus such a coalescence
disappearance of 2p-periodic orbits can occur in this case.

B. Control of the Lorenz system

The Lorenz equation~9! has a chaotic attractor show
in Fig. 6 by the system parameterss510.0, r 528.0, and
b5 8

3 . Among many UPOs contained in this attractor, w
choose the self-symmetric one shown in Fig. 7, wh
satisfies x(t)52x(t2T/2) and y(t)52y(t2T/2), with
period T as is defined in Sec. V. The period of the UPO
T'1.559, and the characteristic multipliers of it a
(l1 ,l2 ,l3)5(4.71, 1.00, 1.19310210). As is well known,
one of the multipliers (l2) is equal to unity because this is
periodic orbit of an autonomous system. Onlyl1 exceeds
unity, so this UPO cannot be stabilized by the original DF
because of the limitation for autonomous systems@11#. Now
we attempt to stabilize this UPO by the following half-perio
DFC:

FIG. 6. Lorenz attractor: A chaotic attractor of the Lorenz equ
tion ~6! with parameter settingss510.0, r 528.0, andb58/3.

FIG. 7. A symmetric UPO in the Lorenz attractor: An unstab
periodic orbit of the Lorenz equation~6! with parameter settings
s510.0, r 528.0, andb58/3.
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ẋ~ t !52s„x~ t !2y~ t !…2k1„x~ t2T/2!1x~ t !…,

ẏ~ t !5rx~ t !2y~ t !2x~ t !z~ t !2k2„y~ t2T/2!1y~ t !…, ~15!

ż~ t !5x~ t !y~ t !2bz~ t !1k3„z~ t2T/2!2z~ t !….

This is a simplified version of the half-period DFC@Eq.
~10!# proposed in Sec. V, with a diagonal gain matr
K5diag(k1,k2,k3).

Figure 8 shows the first and the second characteristic
ponents for the target UPO, withk1 varied from 0.0 to 10.0
while k2 andk3 are fixed to zero. One can see that the fi
characteristic exponentL1 decreases ask1 increases, and be
comes zero neark154.5. On the other hand, the second ch
acteristic exponentL2 turns from zero to a negative value
the same value ofk1 . That is, the UPO is stabilized by th
half-period DFC with some values ofk1 greater than this
critical value. An example of the process of stabilizing t
UPO with k155.0, k253.0, andk350.1 is shown in Fig. 9.
Figure 9~a! is the wave form ofz component, and Figs. 9~b!,
9~c!, and 9~d! are the time evolution of the feedback term
x(t2T/2)1x(t), y(t2T/2)1y(t), and z(t2T)2z(t), re-
spectively.

VII. CONCLUSION

In order to overcome the limitation of the DFC, we pr
posed a half-period delayed feedback control utilizing sy
metries of equations. By numerical experiments, we show
that self-symmetrical directly unstable periodic orbits of t
Duffing equation and a self-symmetrical UPO of the Lore
equation could be stabilized by the proposed method.

Since the feedback term vanishes only when the solu
is self-symmetric, the coalescence, generation, and vanis
of generalT-periodic orbits are possible in the stabilizatio
process by this method. This is the essence of the succe
the half-period DFC. It is an interesting problem to clari
the mechanism of the stabilization in detail from such a po
of view of bifurcation.

The application of this method is restricted to se
symmetric directly unstable periodic orbits. However,
rectly unstable periodic orbits are not always self-symmet
as we described above. To overcome this restriction, we c

FIG. 8. Characteristic exponents for the symmetric UPO in
Lorenz equation~6! under the half-period DFC. Parametersk2 and
k3 are fixed to zero. The solid line shows the first characteri
exponentL1 , and the dashed line shows the second character
exponentL2 .
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sider the theoretical analysis of the DFC using bifurcat
theory, described above, to be very important.
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APPENDIX: A PROPERTY OF SELF-SYMMETRIC
SOLUTIONS OF THE DUFFING EQUATION

Here, we prove the following proposition:
Proposition.Every self-symmetric solution of the Duffing

equation~3! is directly unstable.
Proof. Let „x(t),y(t)… be a self-symmetric periodic solu

tion of the Duffing equation~3!. The variational equation o
Eq. ~3! about this solution is

e

c
tic

FIG. 9. An example of the stabilization of a UPO of the Lore
equation~6! by the half-period DFC. The parameter settings ares
510.0,r 528.0,b5

8
3 , k155.0,k253.0, andk350.1.~a! The wave

form of thez component.~b!, ~c!, and~d! show the time evolution
of the feedback termsx(t2T/2)1x(t), y(t2T/2)1y(t), and z(t
2T/2)2z(t), respectively.
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j̇5h, ḣ52dh2aj23x~ t !2j. ~A1!

This is a linear periodic equation of the variable„j(t),h(t)….
In general, its period is equal to 2p, the period of the refer-
ence orbit„x(t),y(t)…. However, in Eq.~A1!, only 3x(t)2 on
the right hand side is time varying. Sincex(t) is self-
symmetric, x(t)52x(t2p) by its definition, and thus
e

e

x(t)25x(t2p)2. Hence Eq.~A1! is a linear periodic equa
tion with periodp. Therefore by the Floquet theory, even
„x(t),y(t)… is inversely unstable, it is so in the sense of
p-periodic solution@i.e., Eq. ~A1! has an unstable solutio
composed of a 2p-periodic solution and an exponential fun
tion#, but it is directly unstable in the sense of a 2p-periodic
solution. As a consequence, a self-symmetric solution is
rectly unstable.
as
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@4# A. Namajūnas, K. Pyragas, and A. Tamasˇevičius, Phys. Lett. A
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