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Delayed feedback contrdDFC), proposed by Pyragd®hys. Lett. A170, 421 (1992], is a simple and
practical method of controlling chaos in continuous dynamical systems. However, it had been proved that the
DFC has a limitation; that is, any hyperbolic unstable periodic oftPO) with an odd number of real
characteristic multipliers greater than unity can never be stabilized by the DFC. In this paper, to overcome this
limitation, we propose a modified DFC, “half-period delayed feedback,” of which the delay time is a half of
the period of the UPO. We apply it to stabilizing self-symmetric directly unstable periodic orbits of the Duffing
equation. This modified DFC can also be generalized to a form stabilizing symmetric periodic orbits in some
systems with symmetries such as the Lorenz equat®h063-651X98)08508-0

PACS numbg(s): 05.45:+b, 02.30.Ks, 02.60.Cb

I. INTRODUCTION for stabilizing self-symmetric directly unstable periodic or-
bits of the Duffing equation. We also show that a symmetric
Delayed feedback contrdDFC), proposed by Pyragas periodic orbit of the Lorenz equation can be stabilized by a
[1], is @ method of controlling chaos in continuous dynami-more generalized form of this modified DFC.
cal systems. The DFC is based on the feedback of the differ- The Duffing equation is a two-dimensional nonautono-
ence between the current state of a system and a state daous differential equation with periodic forcii@4]. Since
layed by the period of a desired unstable periodic orbithe stroboscopic map of this equation is area contracting, a
(UPO). This is a convenient method that does not require aJPO of it is either directly unstable or inversely unstable. A
preliminary calculation of the UPO. Because of this conve-directly unstable orbit has one characteristic multiplier
nience, the DFC method has been applied to controllinggreater than unity. Thus directly unstable orbits can never be
chaos in some real systems such as a laser syi&kmlec-  stabilized by the DFC due to the above limitation. Our pur-
tronic systemg3,4], and a magnetoelastic systéhi. pose is to propose a method for stabilizing UPOs of this
However, the stability analysis required for determiningtype.
the feedback gain is very difficult, because the controlled On the other hand, the Duffing equation has a symmetry:
system is described by a delay-differential equation, the statié x(t) is a solution of the equation, thenx(t—T/2) is also
space of which is infinite dimensional. Moreover, it has beera solution of it. HereT (=2r) is the period of the external
proved that the DFC has a limitation, that is, any hyperbolicforcing. This is due to the fact that the equation is composed
UPOs with an odd number of real characteristic multipliersof a polynomial including only odd-order terms, and the ex-
greater than unity can never be stabilized by the DFC. ternal forcing isB cost, which has a symmetnB cost
This limitation of the DFC was first proved by Ushi6] =—B cos{+T/2). In particular, we call a solution satisfying
for discrete time systems; then it was proved that the DFG(t) = — x(t—T/2) a self-symmetric solution. It is easy to see
for continuous time systems also has the same limitdidn that a self-symmetric solution i& periodic.
Justet al.[8] discussed basically the same result. Pyrdgas The most important property of the Duffing equation we
showed the same limitation for stabilizing equilibrium points utilize in this study is that a directly unstable orbit is also
in two-dimensional continuous systems, and Konishi andself-symmetric in many cases. On the basis of this property,
Kokame[10] proved this limitation for two-dimensional dis- we propose a modification of the DFC for stabilizing self-
crete systems. It was also proved that every control methodymmetric directly unstable orbits in the Duffing equation,
in which the feedback term vanishes when an orbit of theand confirm its feasibility by numerical experiments. We
same period as the delay time is stabilized has the samaso generalize it to control other systems with similar sym-
limitation [11]. Hence it seems hard to overcome this limi- metries such as the Lorenz equation.
tation by any modifications of the DFC proposed so far, This paper is organized as follows. Section Il briefly in-
including the extended time delay autosynchronizatiortroduces the DFC and explains its limitation. Section Il de-
(ETDAS) [9,12,13. scribes some properties, in particular, a symmetry of the
In order to overcome this limitation, we propose a modi-UPOs of the Duffing equation. Section IV proposes a half-
fication of the DFC, “half-period delayed feedback control,” period DFC for stabilizing self-symmetric directly unstable
periodic orbits in the Duffing equation, which cannot be sta-
bilized by the original DFC. Section V generalizes this modi-
*Author to whom correspondence should be addressed. FAXfied DFC to a form controlling chaos in more general equa-
+81-824-34-7011. Electronic address: nakajima@hiro.kindai.ac.jptions with symmetry, in particular the Lorenz equation.
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Section VI shows some numerical experiments on the stabiict of the characteristic multipliers of any orbit is positive

lization of UPOs in the Duffing equation and the Lorenzbecause the stroboscopic map is orientation preserving.
equation using the half-period DFC. Section VII presents ouiTherefore, characteristic multipliers, denotedNyyandX ,,
conclusion. of any UPO of the Duffing equatio(B) satisfy 0<\,<1

<N\1 Or A,<—1<\;<0. A UPO satisfying the former is

[l. DFC AND ITS LIMITATION called a directly unstable orbit, and one satisfying the latter is

) o ) . called an inversely unstable orbit. Directly unstable periodic

Let us consider the stabilization of a UPO contained in aypits cannot be stabilized by the DFC due to the above

chaotic attractor of am-dimensional ordinary differential \entioned limitation.
equation On the other hand, the Duffing equatit) has a kind of
ey n symmetry; that is, whenx(t),y(t)) is a solution of it,
XO=FD.H  (xe R, @) (—=x(t—),—y(t—m)) is also a solution. We can easily
by the DFC[1], prove this fact by noticing that the right hand side of E).
contains only terms of odd number order with respeck to
x(t)=f(x(1),t)+ Kx(t—T)—x(t)). (2 andy, and that the external forcing has a symmeirgost
=—B cos{+). (When the external forcing contains a con-
HereK is annXn feedback gain matrix, an@i(>0) is the  stant term, such a8 cost+B,, however, this symmetry
period of the target UPO. When a solution of E&) con-  does not exis}.
verges to aT-periodic orbit, the feedback tertd(x(t—T) We call a solution satisfyingx(t),y(t))=(—x(t— ),
—X(t)) vanishes, so this is guaranteed to be a solution of the- y(t—)) at every timet a “self-symmetric solution.” A
uncontrolled systentl), that is, the target UPO s stabilized. self-symmetric solution is 2 periodic. This is easily shown
The DFC is a simple and convenient method which doegs follows: If (x(t),y(t)) is self-symmetric, then
not need preliminary calculation of the UPO, and so it is
applicable to controlling unknown systems. However, since x(t—2m),y(t—2m))
the controlled system(2) is described by a differential-
difference equation with the delay tinTe the determination
of the feedback gail is very difficult even if the function of =(=x(t—m),—y(t—m))=(x(1),y(1)).
the systemf, is known. In addition to the above difficulty of
the stability analysis, recently it has been shown that th&'he most important property of the Duffing equation we uti-
DFC has a limitation expressed by the following theorem. lize in this study is that a directly unstable solution is also
Theorem.Suppose that Eq.l) is a nonautonomous sys- self-symmetric in many cases. This does not always hold;
tem that isT periodic with respect to time If the number of  however, its converse, “a self-symmetric unstable solution is
real characteristic multipliers of a hyperbolic UPO greaterdirectly unstable,” is true, as shown in the Appendix.
than unity is odd, then the UPO cannot be stabilized by the Using the symmetry that many directly unstable orbits
DFC. possess, in Sec. IV we will propose a modification of the
This theorem was first proved by Ushio about the DFC forDFC to stabilizing self-symmetric directly unstable periodic
controlling discrete time systeni$§], and then extended to orbits of the Duffing equation.
the case of continuous systefid. This limitation holds for

=X(t—7—m),y(t—7—m))

every control method with which the feedback term vanishes IV. HALF-PERIOD DELAYED FEEDBACK
when a periodic orbit of a certain period is stabilized. There- N o o
fore some extended DFCs such as the ET)832,13, or _To stabilize self-symmetric directly unstable periodic or-
their application to controlling autonomous systems, alsdits, we propose a modified delayed feedback control,
have this limitation[11]. (1) = £ (x(1) )= K (X(t=T/2) +X(1)). @
IIl. UPOS OF THE DUFFING EQUATION Herex=(x,y). The functionf denotes the right hand side of
AND THEIR SYMMETRY the Duffing equatior(3), andK is a 2x2 gain matrix. The

delay time of the feedback is set 1W2=1, a half of the
period of the target directly unstable periodic orbit, instead
of T=21r as for the original DFC. Hence the feedback term
x=y, y=-—38y—ax—x3+B cost. ©) does not necessarily vanish when &Reriodic UPO is sta-
bilized, but it vanishes only when a self-symmetric orbit is
This is an oscillatory system with a sinusoidal periodic forc-stabilized. Therefore, the control described by E).is ex-
ing of the periodT=2#. So the period of every periodic pected to stabilize self-symmetric directly unstable orbits se-
solution is an integer times ofi2 In what follows, we deal lectively. We will call this control half-period delayed feed-
with 27r-periodic solutions. back control.

Since the damping coefficieitis positive in general, the Determination of the value of the gakf of this feedback
stroboscopic map, which is defined by a-Reriodic plotting  is difficult, as is the case for the original DFC. However, the
of the trajectory of solutions, is area contracting on thg/f limitation that directly unstable orbits cannot be stabilized is
plane. Therefore, a completely unstable periodic orbit, bottexpected to be dissolved for the following reason. As shown
of whose characteristic multipliers are greater than unity inin Ref.[7], since a Zr-periodic orbit is not created, and does
their magnitudes, does not exist. On the other hand, the prodhot vanish nor change its location, when the d4iis varied

The Duffing equation is a two-dimensional nonautono-
mous differential equatiofil4],
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in the original DFC, the pitchfork and transcritical bifurca- using general linear outputCx, of the sysmem as
tions cannot occur, which is inevitable if a directly unstablek (CSx(t—T/2)— Cx(t)). HereC is anl X n output matrix,
orbit is to be stabilized. For the half-period DFC, however,andK is annx| gain matrix.
the feedback term vanishes only when a self-symmetric orbit Although system(1) considered above is a nonautono-
is stabilized. Thus such a restriction of bifurcations no longefmous system with ar-periodic function, the generalized
exists. half-period DFC can also be applied to controlling autono-

However, this only implies such a limitation does not ex- mous systems. When E@l) is an autonomous systerh,
plicitly hold for the half-period DFC; thus it is not proved, of does not depend on tinteexplicitly. Hence the symmetry is
course, that a directly unstable orbit can always be stabilizetbxpressed byf (Sx)=Sf(x), and if x(t) is a solution then
Since the stability analysis for the determination of the gains(t) is also a solution. We may call'&periodic orbit(T is
K'is as difficult as for the original DFC, in Sec. VI we will an  arbitrary positive numbgrthat satisfies Sx(t—T/2)
discuss the ab|l|ty of the proposed DFC to stabilize Self'zx(t) Se'f-symmetricl Such a periodic orbit may be stabi-
symmetric directly unstable orbits by numerical calculationsjized by feedbacKEq. (8)].

As an example of an autonomous system with such a
V. GENERALIZATION OF THE HALF-PERIOD DFC symmetry, here we deal with the Lorenz equation

The half-period DFC[Eq. (4)] proposed in Sec. IV is
intended to control the Duffing equatial). However, in
general it is applicable to anp-dimensional system de- .
scribed by Eq(1) when the functiorf in the right hand side Y=TX—y—Xz, ©)
of Eq. (1) is expanded with respect to tintexs follows:

X=—o(x—y),

zZ=xy—bz
- 2m(2k+1)
f(x(t)'t)sz(X(t))+go gk(x(t))cos T t This three-dimensional equation has a symmetry repre-
sented by a matrixS=diag(—1,—1,1). That is, when
- - 2w(2k+1) x(t),y(t),z(t)) is a solution of it,(—x(t),—y(t),z(t)) is
+k§_:O hk(X(t))Slnf t. (5 also a solution. Therefore a self-symmetric solution, which

satisfies x(t) = —x(t—T/2), y(t)=—y(t—T/2), and z(t)
=z(t—T/2), is aT-periodic solution, and it may be stabi-

Here we assume thdt(x(t)) is a polynomial of an odd lized by the following delayed feedback:

order with respect to the components xfwhile g, (x(t))

andh,(x(t)) are polynomials of an even orderxflt is easy

to see that Eq(1) with these conditions has the same sym- X(t=T/2)+x(t)

metry as the Duffing equatiof8), as shown in Sec. lIl. x(t)=f(x(t))—K| y(t=T2)+y(t) |. (10
The half-period DFC can also be extended to the form Z(t)—z(t—T/2)

controlling systems with more general symmetries as follows

[15]: Here we consider nonautonomous systems described tere x=(x,y,z)", f(x) denotes the right hand side of the

Eqg. (1). We assume the functiohin Eq. (1) is T periodic  Lorenz equatior{9), andK is a 3x 3 gain matrix. Hence all

with respect tat, and has the symmetry, the feedback terms vanish when a self-symméfreriodic
orbit is a solution; that is, this control is expected to stabilize
f(SX,t+T/2)=Sf(x,1), (6)  such a UPO specifically. This is a generalization of the half-
period DFC for autonomous systems, and will be discussed
s?=1,. (7)  in Sec. VL.

The symmetry described by Eq®%) and (7) can be ex-
Here Sis annXxn matrix, andl is the n-dimensional unit tended to more general forms as
matrix. It is easy to see that ¥(t) is a solution of Eq(1)

then Sx(t—T/2) is also a solution. We call a solution that f(Sx,t+T/m)=Sf(x,t), (12)

satisfiesSx(t—T/2)=x(t) at every timet a self-symmetric

solution. It is also clear that a self-symmetric solutioriTis Sn—| (12)
n»

periodic. Therefore, such an orbit is expected to be stabilized

by a delayed feedback, wheremis an integer satisfyingh=2. We can easily see that

(1) = f(x(1), 1)+ K(Sx(t—=T/2)— x(1)). (8) if x(t) is a solution, thersx(t—T/m) is also a solution. We
can consider a delayed feedback control,
This is a natural generalization of the half-period DFC )
[Eq. (4)]. The DFCJ[Eq. (4)] for the Duffing equation can X(t) = f(x(t),t)+ K(Sx(t=T/m) —x(t)), (13
be regarded as a special case of i).with the dimension
n=2 and S=—1,. System(1), with a functionf defined to stabilize a self-symmetric anb-periodic orbit that satis-
by Eq. (5), is also a special case with amxn matrix fies Sx(t—T/m)=x(t). This feedback may be called a
S=—1,. 1/m-period DFC. In particular, we consider thatigeriod
In Eq. (8), the feedback term is based on the state variabl®FC is very important for controlling chaos in three-phase
x itself. However, it can easily be generalized to the formcircuits in electric power systenj46].
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. . TABLE |. UPOs of the Duffing equatio(3). (x,y) is the fixed
point of the stroboscopic map corresponding to each UPO, and

(N1,\,) denotes characteristic multipliers of the fixed poia. 5

=0.25,B=0.3, anda=—1.0.(b) 6=0.1,B=12.0, ande=0.0.

(a) 6=0.25,B=0.3, anda=—1.0

X y A Ao
. . = (i) 0.129 0.194 —0.0257 —8.076
4 o 1 2 3 4 (i) —-1.102 0.636 —0.0257 —8.076
m z (iii) —0.149 0.0189 230.49 0.0009
(a) §=025B=0.3,a=-10 (b) 6§=0.1,B=12.0,a0 =0.0 (b) 5=0.1,B=12.0, anda=0.0
X y A A2
FIG. 1. Chaotic attractors of the Duffing equati8). Strobo-
scopic points at=2n. () §=0.25,B=0.3, anda=—1.0. (b) @) 3.288 —-0.853 —0.144 —3.709
6=0.1,B=12.0, anda=0.0. (i) 3.797 —-1.535 —0.144 —-3.709
(iii ) 3.548 0.726 15.326 0.0348

VI. NUMERICAL EXPERIMENTS

A. Control of the Duffing system (1) =y (1) — Ky (X(t— ) + (1)),

We made numerical experiments of controlling chaos in (14)
the Duffing equation(3) with the following two parame- y(t)=— dy(t)— ax(t)—x(t)3+B cost
ter settings:(a) 6=0.25, B=0.3, anda=—1.0; and (b)
6=0.1, B=12.0, anda=0.0. Chaotic attractors shown in —ky(y(t—a) +y(t)).

Figs. 1@ and Xb) are observed at the above parameter set-
tings (a) and(b), respectivelythe attractors are expressed asWe survey the gain parameteks and k, with which the
those for the stroboscopic mafil4,17). In these attractors, target UPO is stabilized, in the region &®8;=<5.0 and 0.0
the 2r-periodic UPOs shown in Figs(® and 2b) are con- <k,<1.0 for parameter settin¢g), and in the region 0.0
tained. The locations and characteristic multipliers of these<k,<5.0 and 0.&<k,=<5.0 for setting(b). The stability re-
UPOs are shown in Table I. For both parameter settiags gion of UPO(iii ) is denoted by marking> in Figs. 3a) and
and(b), the UPOg(i) and (ii) are symmetric with each other 3(b). The stability is judged from the numerically calculated
and inversely unstable, while the UPQii) is a self- maximum characteristic exponent. The result proves that the
symmetric directly unstable periodic orbit. Therefore UPOsproposed method is applicable to stabilizing self-symmetric
(i) and(ii) are not limited by the limitation described in Sec. directly unstable periodic orbits. Examples of the process of
IIl. In fact, it has been confirmed that they can be stabilizectonverging the stroboscopic point to the target UPO under
by the original DF(18]. Moreover, the Duffing equatiof8)  the half-period DFC are displayed in Fig. 4.
of setting(a) describes a model of a magnetoelastic oscillator The characteristic multipliers shown in Table | imply that
with a chaotic attractor, whose UP@$ and (ii) are proved  UPOQ(iii) has strong instability in both settings) and(b). In
to be stabilized by the DFC in some experimelitb particular, two multipliers have extremely different values in
Here we try to stabilize the directly unstable periodic orbit(a). Hence it should also be remarkable that such orbits,
(iii), by the DFC[Eq. (4)] with a diagonal feedback gain which are hard to stabilize intrinsically, could be stabilized
matrix K=diagk; .k,). That is, we apply a delayed feedback by this method.
as follows: In the parameter region where UR@) cannot be stabi-
lized, the controlled orbits are chaos ofr-periodic orbits
different from each ofi), (ii), and(iii). When a 2r-periodic

05} /

> 0 a f
¥
05
\i"‘ 1
-1 [t} 1
x
(a) 6§=1025B=030=-10 (b) §=0.1,B=12.0,a0 =00

FIG. 3. Stability region in thek;-k, plane for UPQ(iii) of the
FIG. 2. UPOs in chaotic attractors of the Duffing equati8h  Duffing equation(3). The stability region is denoted b¢ . (a) &
(@ 6=0.25,B=0.3, anda=-1.0. (b) 6=0.1,B=12.0, anda  =0.25,B=0.3, anda=—1.0.(b) §=0.1,B=12.0, andae=0.0.
=0.0.
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m ()cycle)
(a-i)
. o.o8 T
§ oo ] 20 0 20
= o4 %’%@AVA"‘ x
;L,.o.o4 L _ FIG. 6. Lorenz attractor: A chaotic attractor of the Lorenz equa-
8 tion (6) with parameter settingg=10.0,r =28.0, andb=8/3.
-0.08 4
o m1(oc%/cle) 200
(a-ii) parametek; varied from 0.0 to 1.0, and, fixed to 0.0. In

this diagram, two bifurcation processes from different initial
values are superimposed. So the bifurcation at the stabiliza-
tion point is not period doubling, as it seems, but pitchfork.
8 That is, branches of two stablergeriodic orbits and UPO
(iii ) coalesce into a stable orbit ndar=0.45. Such a bifur-
cation with a coalescence ofrZperiodic orbits can never

m (cyclel® 40 50 occur when.the qriginal DFC is applied because of the_ limi-
(b-i) tation explained in Sec. [17]. However, for the half-period

4 : . : , DFC, the feedback term vanishes only when a self-
symmetric orbit is a solution. Thus such a coalescence or
disappearance of72periodic orbits can occur in this case.

4 T T T T

(=]
-
[=]

20

z(t — ) + 2(t)

B. Control of the Lorenz system

4 s ) ' '
40 50

2 m (cyde)” The Lorenz equatio9) has a chaotic attractor shown
(b-ii) in Fig. 6 by the system parametess=10.0,r=28.0, and
b=%. Among many UPOs contained in this attractor, we

FIG. 4. Examples of the stabilization of UPOs of the Duffing choose the self-symmetric one shown in Fig. 7, which

equation(3) by the half-period DFC(a-i) stroboscopic points and - o o oft RN .
(avii) the feedback termx(t—m)+x(t) for §=0.25, B=03, o  Sausfiesx(t)=—=x(t=T/2) and y(t)=—y(t—T/2), with
——1.0, k;=5.0 andk,=0.0. (b-i) stroboscopic points antb-ii) period T as is defined in Sec. V. The period of the UPO is
the feedback tern(t— ) +x(t) for 5=0.1, B=12.0, «=0.0, k T~1.559, and the characteristic multipliers of it are
=0.0, andk,=1.0. - T (MU Ng) = (471, 1.00, 1.1910 %9, As is well known,
’ one of the multipliers X,) is equal to unity because this is a
orbit is stabilized, the feedback term does not vanish. HencBe.rIOdIC Orb't of an autonomous system. Only gx_ceeds
it is not a solution of the uncontrolled Duffing equati(s). unity, so this UF{O.ca.nnot be stabilized by the original DFC
Figure 5 is a bifurcation diagram of the stabilization pro- because of the I|m.|t'at|on.for autonomous sys.témlg. NOW.
cess of UPQiii) by the half-period DFQEQ. (14)] with we attempt to stabilize this UPO by the following half-period

30

! | 1

0.25 05 0.75 1
-30

ky 20

0 20
T
FIG. 5. Bifurcation diagram of attractors for the Duffing equa-  FIG. 7. A symmetric UPO in the Lorenz attractor: An unstable

tion (3) under the half-period DFC. The parameters settingsdare periodic orbit of the Lorenz equatio(6) with parameter settings
=0.1,B=12.0,«¢=0.0, andk,=0.0. 0=10.0,r=28.0, andb=8/3.
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2 T T T r w0 T T T T T
o 30
w®
~ 20
'q.\ 10 M -
3 © S . , . . . .
‘\\\ """" 0 5 10 : lgec) 20 25 30
T (a) z-component
2 i 1 1 [ % 20 T
o] 2 4 6 8 10 + 0 i
ky ~
S oL\M (Y
FIG. 8. Characteristic exponents for the symmetric UPO in the |, V\l |
Lorenz equatior(6) under the half-period DFC. Parametégsand ¥ L \ . . . . i
ks are fixed to zero. The solid line shows the first characteristic ° 5 10 tggec) 20 25 30
exponentL,, and the dashed line shows the second characteristi (b) feedback term z(t — T/2) + x(¢)
exponent.,.
p 2 s a0 F T T T T T ]
=
X(1) == a(x() —y(1)) — Ky (X(t=T/2) +x(1)), Xo® I
& P '
y(O) =rx(t) -y —x(Oz(t) —ko(y(t=T/2) +y(1)), (15 1 °© y\rv Ik
E: or 1 i 1 1 1 T
2()=x(1)y(t) —bz(t) + kg(z(t— T/2) — 2(1)). 0 5 0 ey ® - 30

This is a simplified version of the half-period DFKEQ. (c) feedback term y(t - 7/2) + y(9)

(10)] proposed in Sec. V, with a diagonal gain matrix £ * ' ' ' ' '

K=diagk; ks ,ks). roer A A i
Figure 8 shows the first and the second characteristic ex& o f\[\ V AW‘NM' by ron

ponents for the target UPO, witty varied from 0.0 to 10.0 © ol v |

while k, andk; are fixed to zero. One can see that the firsts

characteristic exponeit; decreases ds, increases, and be- 20 s 10
comes zero ned, =4.5. On the other hand, the second char-
acteristic exponerit, turns from zero to a negative value at
the same value df,. That is, the UPO is stabilized by the g1 9. An example of the stabilization of a UPO of the Lorenz
half-period DFC with some values d¢f, greater than this equation(6) by the half-period DFC. The parameter settings are
critical value. An example of the process of stabilizing the—10.0,r=28.0,b=, k,=5.0,k,=3.0, ancks=0.1.(a) The wave
UPO withk;=5.0,k;=3.0, andk;=0.1 is shown in Fig. 9.  form of thez component(b), (c), and(d) show the time evolution
Figure 9a) is the wave form ok component, and Figs(/9),  of the feedback termg(t—T/2)+x(t), y(t—T/2)+y(t), andz(t
9(c), and 4d) are the time evolution of the feedback terms, —T/2)—z(t), respectively.

X(t=T/2)+x(t), y(t—T/2)+y(t), and z(t—T)—2z(t), re-
spectively.

5 20 25 30
t zsec)

(d) feedback term z(t — T/2) — 2(t)

sider the theoretical analysis of the DFC using bifurcation
theory, described above, to be very important.

VIl. CONCLUSION

In order to overcome the limitation of the DFC, we pro- ACKNOWLEDGMENTS
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Since the feedback term vanishes only when the solution

is self-symmetric, the coalescence, generation, and vanishing

of generalT-periodic orbits are possible in the stabilization APPENDIX: A PROPERTY OF SELF-SYMMETRIC

process by this method. This is the essence of the success of SOLUTIONS OF THE DUFFING EQUATION

the half-period DFC. It is an interesting problem to clarify

the mechanism of the stabilization in detail from such a point Here, we prove the following proposition:

of view of bifurcation. Proposition.Every self-symmetric solution of the Duffing
The application of this method is restricted to self- equation(3) is directly unstable.

symmetric directly unstable periodic orbits. However, di- Proof. Let (x(t),y(t)) be a self-symmetric periodic solu-

rectly unstable periodic orbits are not always self-symmetriction of the Duffing equatior§3). The variational equation of

as we described above. To overcome this restriction, we corizg. (3) about this solution is
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£=n, n=—0n—ai—3x(1)%. (A1)

This is a linear periodic equation of the varial§it), 7(t)).
In general, its period is equal tor2the period of the refer-
ence orbit(x(t),y(t)). However, in Eq(A1), only 3x(t)? on
the right hand side is time varying. Sincdt) is self-
symmetric, X(t)=—x(t—=) by its definition, and thus

x(t)?=x(t—)?. Hence Eq(A1l) is a linear periodic equa-
tion with period . Therefore by the Floquet theory, even if
(x(t),y(t)) is inversely unstable, it is so in the sense of a
m-periodic solution[i.e., Eg.(Al) has an unstable solution
composed of a2-periodic solution and an exponential func-
tion], but it is directly unstable in the sense of a-Reriodic
solution. As a consequence, a self-symmetric solution is di-
rectly unstable.
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